TO-DO LIST AND APPOINTMENT MANAGEMENT
SYSTEM

Abstract

The To-Do List and Appointment Management System is a software
solution designed to enhance productivity and time management by providing
users with an intuitive platform to organize tasks and appointments effectively.
This documentation outlines the features, system requirements, installation steps,
and usage guidelines for the application. Key features include task management,
prioritization, reminder alerts, calendar integration, customization options, cross-
platform compatibility, and data synchronization. The system aims to streamline
task management and scheduling processes, ultimately improving efficiency and
reducing the likelihood of missed deadlines or appointments. Users can easily
create, edit, and delete tasks, schedule appointments, set reminders, and
customize settings to suit their preferences. With robust security measures in
place, users can trust that their data is safe and protected. The documentation also
includes a user guide, FAQs, and support information to assist users in

maximizing the benefits of the application.

LIST OF FIGURES

SI.No

Figure No

Title of Figures

Page No

3.1

1

Data Flow Diagram

14

TABLE OF CONTENTS

Chapter No Title Page Number
Acknowledgements 1
Declaration 1
Bona-fide Certificate 111
Abstract v
List of Figures v
1 Introduction 1
2 Project Description 5
3 System Analysis 6
4 System Specification 9
5 System Design 10
6 Software Description 15
7 System Implementation 22
8 System Testing 36
9 Screenshots 38
10 Conclusion 41
11 Future Enhancement 42
References 45

CHAPTER 1
INTRODUCTION

1.1. Overview

The To-Do List and Appointment Management System is a comprehensive
software application designed to help users manage their tasks and appointments
efficiently. This system offers an intuitive and user-friendly interface, allowing
individuals to organize their daily activities, set priorities, and receive timely
reminders. By integrating advanced features such as calendar synchronization and
cross-platform compatibility, the application ensures that users can manage their

schedules seamlessly across different devices.

The documentation provides detailed information on the system's features,
requirements, installation procedures, and usage instructions, making it accessible and
easy to adopt for users. The primary goal of the system is to enhance productivity and

ensure that users do not miss important deadlines or appointments.

1.2. Scope of the Project
The scope of the To-Do List and Appointment Management System encompasses the

following key functionalities:

» Task Management: Users can create, edit, and delete tasks, assign priorities, and
mark tasks as completed.

» Appointment Scheduling: Users can schedule, reschedule, and cancel
appointments, with the ability to add details and set reminders.

» Prioritization: Tasks and appointments can be prioritized to help users focus on
the most important activities first.

» Reminder Alerts: The system sends timely reminder notifications to ensure users
do not miss any important tasks or appointments.

» Calendar Integration: Integration with popular calendar applications (e.g., Google

Calendar, Outlook) to synchronize tasks and appointments.

» Customization Options: Users can customize settings, such as notification

preferences, themes, and layout options, to suit their individual needs.

» Cross-Platform Compatibility: The application supports multiple platforms,

including Android, i0OS, Windows, and macOS, ensuring that users can access

their schedules from any device.

» Data Synchronization: Automatic synchronization of data across devices to

maintain consistency and up-to-date information.

» Security: Robust security measures, including data encryption and secure login,

to protect user information.

1.3. Problem Statement

In today's fast-paced world, individuals often struggle with managing
their time effectively. Balancing multiple tasks, appointments, and deadlines
can be overwhelming, leading to missed deadlines, forgotten appointments,
and decreased productivity. Existing solutions for task and appointment
management often fall short due to lack of intuitive design, limited
functionality, and poor integration across different platforms and devices. This
gap highlights the need for a comprehensive system that not only helps users
organize their tasks and appointments but also enhances their overall time

management and productivity.

Problem

Many individuals face significant challenges in managing their daily schedules,

which can result in:

Missed Deadlines and Appointments: Failure to keep track of important tasks
and appointments can lead to missed opportunities and negative consequences.
Decreased Productivity: Inefficient task management and lack of prioritization
can reduce productivity and increase stress levels.

Poor Time Management: Without a reliable system, individuals may struggle

to allocate their time effectively, leading to inefficient use of time.

Need

Lack of Integration: Many existing tools do not offer seamless integration with
other calendar applications, making it difficult to synchronize schedules across
different platforms.

Limited Customization: Users have diverse needs and preferences, but many
current solutions do not provide adequate customization options.

Data Inconsistency: Without proper synchronization, users may encounter
discrepancies in their schedules when accessing them from different devices.
Security Concerns: Inadequate security measures can lead to data breaches and

compromise user privacy.

There is a clear need for a robust, user-friendly, and secure solution that
addresses these challenges by providing comprehensive task and appointment

management capabilities. The solution should:

Organize Tasks and Appointments: Provide an intuitive interface for users to
create, edit, prioritize, and track tasks and appointments.

Enhance Productivity: Enable users to set reminders and prioritize tasks to
improve their productivity.

Ensure Time Management: Offer tools and features that help users manage
their time more effectively.

Integrate with Calendars: Seamlessly integrate with popular calendar
applications to ensure consistent scheduling.

Allow Customization: Provide customization options to cater to the diverse
needs and preferences of users.

Ensure Data Consistency: Synchronize data across all user devices to maintain
accurate and up-to-date information.

Secure Data: Implement robust security measures to protect user data and
maintain privacy.

Conclusion

To address the challenges of managing tasks and appointments effectively,
there is a need for the To-Do List and Appointment Management System. This

system aims to enhance productivity, improve time management, and provide

a reliable, secure, and customizable platform for users to organize their
schedules. By leveraging advanced features and ensuring cross-platform
compatibility, the system will meet the diverse needs of users and help them

achieve their personal and professional goals..

.CHAPTER 2
PROJECT DESCRIPTION

2.1. AIM AND OBJECTIVES
Aim

The primary aim of the To-Do List and Appointment Management System is
to enhance productivity and time management by providing users with a reliable and
efficient tool to organize their tasks and appointments. The system seeks to reduce the
stress and inefficiency associated with managing multiple activities and deadlines,

ultimately helping users achieve their personal and professional goals.

Objectives

» Improve Task and Appointment Management: Provide a seamless and intuitive

platform for users to manage their tasks and appointments efficiently.

» Enhance Productivity: Enable users to prioritize their activities, set reminders,
and avoid missed deadlines or appointments, thereby increasing overall

productivity.

» Ensure Data Consistency: Implement data synchronization across multiple

devices to ensure users have access to up-to-date information at all times.

» Offer Customization: Allow users to personalize the application according to

their preferences, improving user experience and satisfaction.

> Integrate with Calendars: Facilitate synchronization with popular calendar

applications to streamline scheduling and avoid conflicts.

» Provide Security: Implement robust security features to protect user data and

maintain confidentiality.

» Support Cross-Platform Access: Ensure the application is accessible on various

platforms and devices, providing flexibility and convenience to users.

» Deliver User Support: Provide comprehensive documentation, user guides, FAQs,

and customer support to assist users in maximizing the benefits of the application.

CHAPTER 3

SYSTEM ANALYSIS

3.1.EXISTING SYSTEM
The current appointment management system operates as a web-based
application designed to facilitate scheduling and organization for both medical
professionals and patients. Utilizing a combination of AngularJS for frontend
development, Divided into distinct components including Patient Registration
System, Doctor Panel, and Administrative functionalities, the system ensures

efficient registration and login processes for doctors and patients alike..

DRAWBACK

o System may struggle to handle increased user load and data volume

o Performance issues and decreased responsiveness may arise.

o Difficulty in adapting to future growth and evolving user requirements.

3.2. PROPOSED SYSTEM
The proposed appointment management system presents a user-centric
approach to streamline scheduling processes for both medical practitioners and

patients. Comprising two primary interfaces

e - Doctor and Patient panels - accessible via a dedicated mobile application, the
system aims to enhance convenience and accessibility. Upon initial installation
on their mobile devices, users are prompted to register within the application.
Subsequently, patients receive unique login credentials for seamless access to
the platform.

e Upon logging in, patients are presented with intuitive filtering options based
on geographical location and medical specialty. Leveraging these filters,
patients can browse through a curated list of healthcare providers, accessing
comprehensive profiles detailing professional expertise and availability
schedules. Once a suitable provider is identified, patients can seamlessly

request appointments at their convenience.

e In parallel, healthcare providers have access to their personalized dashboard,
enabling them to manage appointment requests, view patient profiles, and
update availability schedules in real-time. Through the integration of push
notifications, patients receive timely reminders leading up to scheduled
appointments, thereby minimizing the likelihood of missed appointments and

optimizing healthcare deliver

ADVANTAGES OF PROPOSED SYSTEM

e The proposed appointment management system offers several advantages over
traditional methods, enhancing efficiency, accessibility, and user experience

. Improved Accessibility: With a dedicated mobile application, users can
access the appointment management system anytime, anywhere, providing
greater flexibility and convenience.

o Streamlined Appointment Scheduling: The system's intuitive interface
allows patients to easily browse through available doctors based on various
criteria, facilitating quick and informed decision-making.

o Enhanced Communication: By enabling direct communication between
patients and healthcare providers through the application, the proposed system
fosters seamless interaction, reducing miscommunication and improving
patient satisfaction.

o Real-Time Updates: Healthcare providers can update their availability
schedules in real- time, ensuring that patients have access to the latest
information and reducing the likelihood of scheduling conflicts.

o Automated Reminders: The integration of push notifications ensures that
patients receive timely reminders leading up to their appointments, minimizing
the risk of missed appointments and improving appointment adherence rates.

o Efficient Management: Healthcare providers benefit from a centralized
dashboard where they can manage appointment requests, view patient profiles,
and update schedules, streamlining administrative tasks and improving overall
operational efficiency.

o Data-driven Insights: The system's backend analytics capabilities enable

healthcare providers to gather valuable insights into appointment trends,

patient preferences, and resource utilization, facilitating informed decision-
making and continuous improvement.

Scalability and Adaptability: The modular architecture of the proposed
system allows for easy scalability and adaptability to accommodate future
growth and changes in healthcare needs and technology.

Overall, the proposed appointment management system offers a
comprehensive solution that addresses the challenges of traditional
appointment scheduling methods, providing benefits for both patients and

healthcare providers alike..

CHAPTER 4

SYSTEM SPECIFICATION

4.1. Hardware Requirements:

Model : IBM System X3650M4[791514A]
Processor : Intel Core 13 or equivalent.

RAM : 4GB or higher recharge

Hard Disk : 300GB

Storage : 200MB of available disk space.=
Keyboard : PS/2Keyboard

4.2. Software Requirements:

Operating System Server : Windows 10 Basic Edition
Language used : Python

Development Environment : Pycharm

Language Version : IDLE(Python 3.12)

CHAPTER 5
SYSTEM DESIGN

5.1. SYSTEM ARCHITECTURE

The system architecture for the To-Do List and Appointment Management
System is designed to ensure scalability, reliability, and ease of use. It encompasses
various components that work together to provide a seamless experience for users

across multiple platforms. The architecture includes the following layers:
® Presentation Layer (User Interface)
® Application Layer (Business Logic)
® Data Access Layer
® Database Layer
® Integration Layer
® Security Layer
1. Presentation Layer (User Interface)

The Presentation Layer is responsible for the user interface (UI) and user experience
(UX). This layer interacts directly with the users, providing them with an intuitive

platform to manage tasks and appointments.
Components:

® Mobile Application: Android and iOS apps developed using Flutter or

React Native for cross-platform compatibility.

® Web Application: Web interface developed using modern web

technologies such as React.js or Angular.

10

Features:
® Task creation, editing, and deletion
® Appointment scheduling and management
® Prioritization of tasks and appointments
® (Customizable settings

® Reminder notifications

2. Application Layer (Business Logic)

The Application Layer handles the core functionality and business logic of the system.

It processes user inputs, performs operations, and communicates with the Data Access

Layer.
Components:
® Task Management Module: Manages task-related operations.
® Appointment Management Module: Manages appointment-related
operations.
® Notification Module: Handles reminder alerts and notifications.
® User Preferences Module: Manages user settings and customization
options.
Technologies:

® Node.js or Django for server-side processing

® RESTful API endpoints to handle client requests

11

3. Data Access Layer

The Data Access Layer acts as an intermediary between the Application Layer

and the Database Layer. It handles data retrieval, manipulation, and storage operations.
Components:

® Data Access Objects (DAO)

® Repository Pattern for data handling
Technologies:

® ORM (Object-Relational Mapping) tools like Sequelize (Node.js) or
Django ORM

4. Database Layer

The Database Layer is responsible for data storage and management. It

ensures that data is stored securely and can be retrieved efficiently.
Components:
® Database Management System (DBMS): Manages database operations.
® Backup and Recovery: Ensures data integrity and availability.
Technologies:
® Relational Database: MySQL or PostgreSQL for structured data

® NoSQL Database: MongoDB for unstructured data

5. Integration Layer

The Integration Layer handles communication with external systems and services.

This includes calendar integration, third-party APIs, and other external services.

12

Components:

® (Calendar Integration: Synchronizes tasks and appointments with

external calendars (Google Calendar, Outlook).

® External APIs: Interfaces with third-party services for additional

functionalities (e.g., push notifications, SMS alerts).
Technologies:
® RESTful APIs

® OAuth for secure API integration

6. Security Layer

The Security Layer ensures that the system is protected against threats and
vulnerabilities. It implements various security measures to safeguard user data and

maintain privacy.
Components:
® Authentication: Secure login and user authentication.

® Authorization: Role-based access control to restrict access to certain

features.
® Encryption: Protects data in transit and at rest.
® Audit Logging: Tracks user activities for security monitoring.
Technologies:
® JWT (JSON Web Tokens) for secure authentication
® HTTPS for secure communication
® Data encryption techniques (e.g., AES, RSA)

® Architectural Diagram

13

Below is a high-level diagram illustrating the system architecture:

Create new account
patient /doctor

Patient

Search doctor Accept/Reject

new doctor
request

Add time

schedule
Manage doctor

and patient
View

e Input Bkash

Transaction Accept/Reject

appointment
request

Appointment
confirm

5.1. Fig 1: Dat Flow Diagram

14

CHAPTER 6
SOFTWARE DESCRIPTION
4.1. PYTHON 3.7.4
Python is a general-purpose interpreted, interactive, object-oriented, and high-
level programming language. It was created by Guido van Rossum during 1985- 1990.
Like Perl, Python source code is also available under the GNU General Public
License (GPL). This tutorial gives enough understanding on Python programming

language.

python

Programming

Python is a high-level, interpreted, interactive and object-oriented scripting language.
Python is designed to be highly readable. It uses English keywords frequently where
as other languages use punctuation, and it has fewer syntactical constructions than
other languages. Python is a MUST for students and working professionals to become
a great Software Engineer specially when they are working in Web Development
Domain.
Python is currently the most widely used multi-purpose, high-level programming
language. Python allows programming in Object-Oriented and Procedural paradigms.
Python programs generally are smaller than other programming languages like Java.
Programmers have to type relatively less and indentation requirement of the language,
makes them readable all the time. Python language is being used by almost all tech-
giant companies like — Google, Amazon, Facebook, Instagram, Dropbox, Uber... etc.
The biggest strength of Python is huge collection of standard libraries which can be
used for the following:

e Machine Learning

e GUI Applications (like Kivy, Tkinter, PyQt etc.)

e Web frameworks like Django (used by YouTube, Instagram, Dropbox)

e Image processing (like OpenCV, Pillow)

e Web scraping (like Scrapy, BeautifulSoup, Selenium)

15

o Test frameworks
e Multimedia
e Scientific computing

e Text processing and many more.

Pandas

pandas are a fast, powerful, flexible and easy to use open source data analysis
and manipulation tool, built on top of the Python programming language. pandas are a
Python package that provides fast, flexible, and expressive data structures designed to
make working with "relational" or "labeled" data both easy and intuitive. It aims to be

the fundamental high-level building block for doing practical, real world data analysis

A

in Python.

[l pandas

Pandas is mainly used for data analysis and associated manipulation of tabular data in
Data frames. Pandas allows importing data from various file formats such as comma-
separated values, JSON, Parquet, SQL database tables or queries, and Microsoft Excel.
Pandas allows various data manipulation operations such as merging, reshaping,
selecting, as well as data cleaning, and data wrangling features. The development of
pandas introduced into Python many comparable features of working with Data
frames that were established in the R programming language. The panda’s library is
built upon another library NumPy, which is oriented to efficiently working with

arrays instead of the features of working on Data frames.

NumPy
NumPy, which stands for Numerical Python, is a library consisting of
multidimensional array objects and a collection of routines for processing those arrays.

Using NumPy, mathematical and logical operations on arrays can be performed.

16

’ NumPy

NumPy is a general-purpose array-processing package. It provides a high-
performance multidimensional array object, and tools for working with these arrays.
Matplotlib

Matplotlib is a comprehensive library for creating static, animated, and
interactive visualizations in Python. Matplotlib makes easy things easy and hard

things possible.

F .
matpl:tlib

Matplotlib is a plotting library for the Python programming language and its
numerical mathematics extension NumPy. It provides an object-oriented API for
embedding plots into applications using general-purpose GUI toolkits like Tkinter,
wxPython, Qt, or GTK.

Scikit Learn

scikit-learn is a Python module for machine learning built on top of SciPy and is

distributed under the 3-Clause BSD license.

.ﬁewm

machine learning in Python

Scikit-learn (formerly scikits. learn and also known as sklearn) is a free software
machine learning library for the Python programming language. It features various
classification, regression and clustering algorithms including support-vector machines,
random forests, gradient boosting, k-means and DBSCAN, and is designed to

interoperate with the Python numerical and scientific libraries NumPy and SciPy.

4.2. MYSQL

MySQL tutorial provides basic and advanced concepts of MySQL. Our
MySQL tutorial is designed for beginners and professionals. MySQL is a relational
database management system based on the Structured Query Language, which is the
popular language for accessing and managing the records in the database. MySQL is

open-source and free software under the GNU license. It is supported by Oracle

17

Company. MySQL database that provides for how to manage database and to
manipulate data with the help of various SQL queries. These queries are: insert
records, update records, delete records, select records, create tables, drop tables, etc.
There are also given MySQL interview questions to help you better understand the

MySQL database.

MySOolL.

MySQL is currently the most popular database management system software used for
managing the relational database. It is open-source database software, which is
supported by Oracle Company. It is fast, scalable, and easy to use database
management system in comparison with Microsoft SQL Server and Oracle Database.
It is commonly used in conjunction with PHP scripts for creating powerful and
dynamic server-side or web-based enterprise applications. It is developed, marketed,
and supported by MySQL AB, a Swedish company, and written in C programming
language and C++ programming language. The official pronunciation of MySQL is
not the My Sequel; it is My Ess Que Ell. However, you can pronounce it in your way.
Many small and big companies use MySQL. MySQL supports many Operating

Systems like Windows, Linux, MacOS, etc. with C, C++, and Java languages.

4.3. WAMPSERVER
WampServer is a Windows web development environment. It allows you to
create web applications with Apache2, PHP and a MySQL database. Alongside,

PhpMyAdmin allows you to manage easily your database.

WAMPServer is a reliable web development software program that lets you create

web apps with MYSQL database and PHP Apache2. With an intuitive interface, the

18

application features numerous functionalities and makes it the preferred choice of
developers from around the world. The software is free to use and doesn’t require a

payment or subscription.

4.4. BOOTSTRAP 4
Bootstrap is a free and open-source tool collection for creating responsive
websites and web applications. It is the most popular HTML, CSS, and JavaScript

framework for developing responsive, mobile-first websites.

It solves many problems which we had once, one of which is the cross-browser
compatibility issue. Nowadays, the websites are perfect for all the browsers (IE,
Firefox, and Chrome) and for all sizes of screens (Desktop, Tablets, Phablets, and
Phones). All thanks to Bootstrap developers -Mark Otto and Jacob Thornton of
Twitter, though it was later declared to be an open-source project.

Easy to use: Anybody with just basic knowledge of HTML and CSS can start using
Bootstrap

Responsive features: Bootstrap's responsive CSS adjusts to phones, tablets, and
desktops

Mobile-first approach: In Bootstrap, mobile-first styles are part of the core
framework

Browser compatibility: Bootstrap 4 is compatible with all modern browsers (Chrome,

Firefox, Internet Explorer 10+, Edge, Safari, and Opera)

4.5. FLASK
Flask is a web framework. This means flask provides you with tools, libraries

and technologies that allow you to build a web application. This web application can

19

http://flask.pocoo.org/

be some web pages, a blog, a wiki or go as big as a web-based calendar application or

Flask

web development,
one drop at a time

a commercial website.

Flask is often referred to as a micro framework. It aims to keep the core of an
application simple yet extensible. Flask does not have built-in abstraction layer for
database handling, nor does it have formed a validation support. Instead, Flask
supports the extensions to add such functionality to the application. Although Flask is
rather young compared to most Python frameworks, it holds a great promise and has
already gained popularity among Python web developers. Let’s take a closer look into
Flask, so-called “micro” framework for Python.

Flask is part of the categories of the micro-framework. Micro-framework are normally
framework with little to no dependencies to external libraries. This has pros and cons.
Pros would be that the framework is light, there are little dependency to update and
watch for security bugs, cons is that some time you will have to do more work by

yourself or increase yourself the list of dependencies by adding plugins.

4.6. JSON

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It
is easy for humans to read and write. It is easy for machines to parse and generate. It
is based on a subset of the JavaScript Programming Language Standard ECMA-262
3rd Edition - December 1999. JSON is a text format that is completely language
independent but uses conventions that are familiar to programmers of the C-family of
languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many others.

These properties make JSON an ideal data-interchange language.

A (3SON}

JSON consists of "name: object" pairs and punctuation in the form of brackets,

parentheses, semi-colons and colons. Each object is defined with an operator like

20

https://quintagroup.com/services/python

"text:" or "image:" and then grouped with a value for that operator. The simple
structure and absence of mathematical notation or algorithms, JSON is easy to
understand and quickly mastered, even by users with limited formal programming
experience, which has spurred adoption of the format as a quick, approachable way to

create interactive pages.

21

CHAPTER 7
SYSTEM IMPLEMENTATION
7.1. System Description
The implementation of the To-Do List and Appointment Management System
involves several steps, encompassing setting up the development environment,
designing the database, developing the backend and frontend, performing integration

and testing, and finally deploying the system.
1. Setting Up the Development Environment
1.1. Prerequisites

Development Tools: Install Node.js and npm for both server-side and front-

end development.

Database Systems: Install a relational database management system (e.g.,

MySQL or PostgreSQL) and a NoSQL database system (e.g., MongoDB).

Mobile Development: Install Android Studio and Xcode for developing the mobile

application using React Native.

Code Editor: Use a code editor like Visual Studio Code.

1.2. Installing Required Tools and Libraries
Install the React Native CLI for mobile application development.
Set up Node.js with Express.js for backend development.

Create a React project for the web application front-end.

2. Database Design and Setup

2.1. Relational Database

Tables: Define tables for users, tasks, and appointments.

22

Users table: Contains user information such as ID, name, email, password, and

role.

Tasks table: Contains task information including task ID, user ID, title,

description, priority, due date, and status.

Appointments table: Contains appointment details such as appointment ID,

user ID, title, description, appointment date, and location.

2.2. NoSQL Database

Collections: Define collections for users, tasks, and appointments with similar fields

as in the relational database.

2.3. Creating Database Schemas and Tables

Use an ORM (Object-Relational Mapping) tool to define the database schema and

manage interactions with the database.

3. Backend Development
3.1. Setting Up the Server

Set up an Express.js server to handle HTTP requests and route them to appropriate

handlers.

Create RESTful API endpoints for managing users, tasks, and appointments.

3.2. Creating API Endpoints
Users:

Registration and login endpoints to handle user authentication.
Tasks:

Endpoints to create, read, update, and delete tasks.

23

Appointments:

Endpoints to create, read, update, and delete appointments.

4. Frontend Development
4.1. Creating the React Native Application
Set up the React Native project for developing the mobile application.

Develop user interface components for logging in, managing tasks, and managing

appointments.

4.2. Creating the React Web Application
Set up the React project for developing the web application.

Develop user interface components for similar functionalities as in the mobile

application.

4.3. Integrating with the Backend

Ensure the frontend communicates with the backend API endpoints to fetch and

manipulate data

5. Integration and Testing
5.1. Integration Testing

Perform integration testing to ensure that all components (frontend, backend, and

database) work together seamlessly.

Use tools like Postman or Insomnia to test API endpoints.

5.2. User Acceptance Testing (UAT)

24

Conduct UAT with real users to gather feedback and ensure that the system meets

user requirements and expectations.

6. Deployment

6.1. Backend Deployment

Deploy the backend server on platforms like Heroku, AWS, or DigitalOcean.

Configure environment variables for database connections and other settings.

6.2. Mobile App Deployment

Publish the React Native application on the Google Play Store (for Android) and the
Apple App Store (for i0S).

6.3. Web Application Deployment

Deploy the React web application on hosting platforms such as Vercel, Netlify, or
AWS Amplify.

Summary

The implementation of the To-Do List and Appointment Management System
involves a series of structured steps to set up the development environment, design
and set up the database, develop the backend and frontend components, perform
thorough testing, and finally deploy the system. This process ensures the development
of a robust, user-friendly, and efficient application that helps users manage their tasks

and appointments effectively.

Future Enhancements

To further enhance the To-Do List and Appointment Management System, the

following future improvements can be considered:

25

Advanced Analytics and Reporting: Integrate advanced analytics to provide users

with insights into their productivity trends and task completion rates.

Voice Commands Integration: Implement voice command functionality for

hands-free task and appointment management.

Al-Based Recommendations: Use machine learning algorithms to provide

intelligent recommendations for task prioritization and scheduling.

Collaboration Features: Allow multiple users to collaborate on tasks and share

appointments, making it useful for team projects and family schedules.

Offline Functionality: Enable offline access to the application with data

synchronization once the internet connection is restored.

Third-Party Integrations: Expand integrations with other productivity tools and

platforms (e.g., Slack, Microsoft Teams) for seamless workflow management.

Enhanced Security Features: Implement additional security measures like two-

factor authentication (2FA) to enhance data protection.

Customizable Dashboards: Allow users to customize their dashboards and views

according to their preferences for a more personalized experience.

Gamification: Introduce gamification elements to motivate users and make task

management more engaging.

Multi-Language Support: Add support for multiple languages to cater to a

broader user base globally.

26

SOURCECODE
import sqlite3
import tkinter.ttk as ttk

import tkinter.messagebox as tkMessageBox

root = Tk()

root.title("To Do List Appoinment") width = 700

height = 400

screen_width = root.winfo_screenwidth() screen_height = root.winfo_screenheight()
x = (screen_width/2) - (width/2)

y = (screen_height/2) - (height/2) root.geometry("%dx%d+%d+%d" % (width, height,
X, y)) root.resizable(0, 0)

_n

root.config(bg="purple")

VARIABLES

FIRSTNAME = StringVar() LASTNAME = StringVar() GENDER = StringVar()
AGE = StringVar() ADDRESS = StringVar() CONTACT = StringVar()

METHODS

def Database():

conn = sqlite3.connect("pythontut.db") cursor = conn.cursor()

27

cursor.execute("CREATE TABLE IF NOT EXISTS 'member’ (mem_id INTEGER
NOT NULL PRIMARY KEY AUTOINCREMENT, firstname TEXT, lastname
TEXT, gender TEXT, age TEXT, address TEXT, contact TEXT)")
cursor.execute("SELECT * FROM ‘member’ ORDER BY ‘lastname’ ASC") fetch =
cursor.fetchall()

for data in fetch:

tree.insert(", 'end', values=(data)) cursor.close()

conn.close()

def SubmitData():
if FIRSTNAME.get() == "" or LASTNAME .get() == "" or GENDER.get() == "" or
AGE.get() =="" or ADDRESS.get() =="" or CONTACT.get() =="":

result = tkMessageBox.showwarning(", 'Please Complete The Required Field',
icon="warning")

else:

tree.delete(*tree.get children())

conn = sqlite3.connect("pythontut.db") cursor = conn.cursor()
cursor.execute("INSERT INTO ‘'member’ (firstname, lastname, gender, age, address,
contact) VALUES(?, 2, ?7,?,?,7)", (str(FIRSTNAME.get()), str(LASTNAME.get()),
str(GENDER.get()), str(AGE.get()), str(ADDRESS.get()), str(CONTACT.get())))
conn.commit()

cursor.execute("SELECT * FROM 'member’ ORDER BY ‘lastname’ ASC") fetch =
cursor.fetchall()

as for data in fetch:

tree.insert(", 'end', values=(data)) cursor.close()

conn.close() FIRSTNAME.set("") LASTNAME.set("")

GENDER.set("")

AGE.set("")

ADDRESS.set("")

CONTACT.set("")
def UpdateData():
if GENDER.get() =="":

28

result = tkMessageBox.showwarning(", 'Please Complete The Required Field',
icon="warning")

else:

tree.delete(*tree.get children())

conn = sqlite3.connect("pythontut.db") cursor = conn.cursor()
cursor.execute("UPDATE "member” SET firstname’ = ?, “lastname’ = ?, "gender’ =?,
‘age’ = 7, ‘address = ?, ‘contactt = ? WHERE '"mem id° = 7",
(str(FIRSTNAME.get()), str(LASTNAME.get()), sttf(GENDER.get()), str(AGE.get()),
stt(ADDRESS.get()), str(CONTACT.get()), int(mem_id)))

conn.commit()

cursor.execute("SELECT * FROM 'member’ ORDER BY ‘lastname’ ASC") fetch =
cursor.fetchall()

for data in fetch:

tree.insert(", 'end', values=(data)) cursor.close()

conn.close() FIRSTNAME.set("") LASTNAME.set("")

GENDER.set("")

AGE.set("")

ADDRESS.set("")

CONTACT.set("")

def OnSelected(event):

global mem_id, UpdateWindow curltem = tree.focus()

contents =(tree.item(curltem)) selecteditem = contents['values'] mem id =
selecteditem[0]

FIRSTNAME.set("") LASTNAME.set("")

GENDER.set("")

AGE.set("")

ADDRESS.set("")

CONTACT.set("")

FIRSTNAME .set(selecteditem[1]) LASTNAME .set(selecteditem[2])
AGE.set(selecteditem[4]) ADDRESS .set(selecteditem[5])
CONTACT set(selecteditem[6]) UpdateWindow = Toplevel()
UpdateWindow.title("Admission Enquiry Management System") width =400

29

height =300

screen_width = root.winfo_screenwidth() screen_height = root.winfo_screenheight()
x = ((screen_width/2) + 450) - (width/2)

y = ((screen_height/2) + 20) - (height/2) UpdateWindow.resizable(0, 0)
UpdateWindow.geometry("%dx%d+%d+%d" % (width, height, x, vy)) if
'NewWindow' in globals():

NewWindow.destroy()

FRAMES
FormTitle = Frame(UpdateWindow) FormTitle.pack(side=TOP) ContactForm

Frame(UpdateWindow) ContactForm.pack(side=TOP, pady=10) RadioGroup
Frame(ContactForm)
Male = Radiobutton(RadioGroup, text="Male", variable=GENDER, value="Male",
font=("times new roman', 14)).pack(side=LEFT)
Female= Radiobutton(RadioGroup, text="Female",

variable=GENDER, value="Female", font=("times new roman',

14)).pack(side=LEFT)

=

LABELS

Ibl_title = Label(FormTitle, text="Updating Contacts", font=("times new roman', 16),
bg="orange", width = 300)

Ibl_title.pack(fill=X)

Ibl_firstname = Label(ContactForm, text="Firstname", font=("times new roman', 14),
bd=5)

Ibl_firstname.grid(row=0, sticky=W)

Ibl lastname = Label(ContactForm, text="Lastname", font=("times new roman', 14),
bd=5)

Ibl lastname.grid(row=1, sticky=W)

Ibl_gender = Label(ContactForm, text="Gender", font=("times new roman', 14), bd=5)
Ibl_gender.grid(row=2, sticky=W)

Ibl age = Label(ContactForm, text="Age", font=('times new roman', 14), bd=5)
Ibl_age.grid(row=3, sticky=W)

30

Ibl address = Label(ContactForm, text="Address", font=('times new roman', 14),
bd=5) Ibl address.grid(row=4, sticky=W)
Ibl_contact = Label(ContactForm, text="Contact", font=("times new roman', 14), bd=5)

Ibl_contact.grid(row=5, sticky=W)

ENTRY

firstname = Entry(ContactForm, textvariable=FIRSTNAME, font=("times new roman’,
14)

firstname.grid(row=0, column=1)

lastname = Entry(ContactForm, textvariable=sLASTNAME, font=("times new roman',

14))

lastname.grid(row=1, column=1) RadioGroup.grid(row=2, column=1)

age = Entry(ContactForm, textvariable=AGE, font=("times new roman', 14))

age.grid(row=3, column=1)

address = Entry(ContactForm, textvariable=ADDRESS, font=('times new roman', 14))
address.grid(row=4, column=1)

contact = Entry(ContactForm, textvariable=CONTACT, font=("times new roman', 14))

contact.grid(row=5, column=1)

=

BUTTONS

btn_updatecon= Button(ContactForm, text="Update", width=50,

command=UpdateData)

btn_updatecon.grid(row=6, columnspan=2, pady=10) #fn1353p

def DeleteData():

if not tree.selection():

result = tkMessageBox.showwarning(", 'Please Select Something
First!', icon="warning")

else:

result = tkMessageBox.askquestion(", 'Are you sure you want to delete this record?’,

icon="warning")

if result == "yes'": curltem = tree.focus()

contents =(tree.item(curltem)) selecteditem = contents['values'] tree.delete(curltem)

31

conn = sqlite3.connect("pythontut.db") cursor = conn.cursor()
cursor.execute("DELETE FROM ‘member’ WHERE ‘mem id° = %d" %
selecteditem[0])

conn.commit() cursor.close() conn.close()

def AddNewWindow():

global NewWindow FIRSTNAME.set("") LASTNAME .set("")
GENDER.set("")

AGE.set("")

ADDRESS.set("")

CONTACT.set("")

NewWindow = Toplevel()

NewWindow.title(" Admission Enquiry Management System")

width = 400

height =300

screen_width = root.winfo screenwidth() screen_height = root.winfo screenheight()
x = ((screen_width/2) - 455) - (width/2)

y = ((screen_height/2) + 20) - (height/2) NewWindow.resizable(0, 0)
NewWindow.geometry("%dx%d+%d+%d" % (width, height, x, y)) if
'UpdateWindow' in globals():

UpdateWindow.destroy()

FRAMES
FormTitle = Frame(NewWindow) FormTitle.pack(side=TOP) ContactForm =

Frame(NewWindow) ContactForm.pack(side=TOP, pady=10) RadioGroup =

Frame(ContactForm)
Male = Radiobutton(RadioGroup, text="Male", variable=GENDER, value="Male",
font=("times new roman', 14)).pack(side=LEFT)
Female= Radiobutton(RadioGroup, text="Female",
variable=GENDER, value="Female", font=("times new roman',

14)).pack(side=LEFT)

H=

LABELS

32

Ibl title = Label(FormTitle, text="To Do List", font=("times new roman', 16),
bg="#66ft66", width = 300)

Ibl_title.pack(fill=X)

Ibl_firstname = Label(ContactForm, text="Name", font=("times new roman', 14),
bd=5) Ibl_firstname.grid(row=0, sticky=W)

Ibl lastname = Label(ContactForm, text="Purpose", font=("times new roman', 14),
bd=5) Ibl lastname.grid(row=1, sticky=W)

Ibl_gender = Label(ContactForm, text="Gender", font=("times new roman', 14), bd=5)
Ibl_gender.grid(row=2, sticky=W)

Ibl age = Label(ContactForm, text="Date", font=('times new roman', 14), bd=5)
Ibl_age.grid(row=3, sticky=W)

Ibl_address = Label(ContactForm, text="Address", font=('times new roman', 14),

bd=5)

Ibl_address.grid(row=4, sticky=W)
Ibl_contact = Label(ContactForm, text="Contact", font=("times new roman', 14), bd=5)

Ibl_contact.grid(row=5, sticky=W)

ENTRY

firstname = Entry(ContactForm, textvariable=FIRSTNAME, font=("times new roman’,
14))

firstname.grid(row=0, column=1)

lastname = Entry(ContactForm, textvariable=sLASTNAME, font=("times new roman',

14))

lastname.grid(row=1, column=1) RadioGroup.grid(row=2, column=1)

age = Entry(ContactForm, textvariable=AGE, font=("times new roman', 14))

age.grid(row=3, column=1)

address = Entry(ContactForm, textvariable=ADDRESS, font=("times new roman', 14))
address.grid(row=4, column=1)

contact = Entry(ContactForm, textvariable=CONTACT, font=("times new roman', 14))

contact.grid(row=5, column=1)

=

BUTTONS

33

btn_addcon = Button(ContactForm, text="Save", width=50, command=SubmitData)

btn_addcon.grid(row=6, columnspan=2, pady=10)

" FRAMES

Top = Frame(root, width=500, bd=1, relief=SOLID) Top.pack(side=TOP)

Mid = Frame(root, width=500, bg="purple") Mid.pack(side=TOP)

MidLeft = Frame(Mid, width=100) MidLeft.pack(side=LEFT, pady=10)
MidLeftPadding = Frame(Mid, width=370, bg="black")
MidLeftPadding.pack(side=LEFT)

MidRight = Frame(Mid, width=100) MidRight.pack(side=RIGHT, pady=10)

TableMargin = Frame(root, width=500) TableMargin.pack(side=TOP)
LABELS

H=

Ibl_title = Label(Top, text="To Do List Appoinment", font=("times new roman", 30,
"bold"), width=500,bg="purple",fg="white")
Ibl_title.pack(fill=X)

ENTRY
BUTTONS
btn_add = Button(MidLeft, text="+ ADD NEW",

bg="#66{t66", command=AddNewWindow)
btn_add.pack()

34

btn_delete = Button(MidRight, text="DELETE", bg="red", command=DeleteData)
btn_delete.pack(side=RIGHT)

TABLES

scrollbarx = Scrollbar(TableMargin, orient=HORIZONTAL) scrollbary =
Scrollbar(TableMargin, orient=VERTICAL)

tree = ttk.Treeview(TableMargin, columns=("ID", "Name", "Purpose", "Gender",
"Date", "Address", "Contact"), height=400, selectmode="extended",
yscrollcommand=scrollbary.set, xscrollcommand=scrollbarx.set)
scrollbary.config(command=tree.yview)

scrollbary.pack(side=RIGHT, fill=Y) scrollbarx.config(command=tree.xview)
scrollbarx.pack(side=BOTTOM, fill=X) tree.heading('ID', text="ID", anchor=W)
tree.heading('Name', text="Name", anchor=W) tree.heading('Purpose’, text="Purpose",
anchor=W) tree.heading('Gender', text="Gender", anchor=W) tree.heading('Date’,

text="Date", anchor=W)

tree.heading('Address', text="Address", anchor=W) tree.heading('Contact’,
text="Contact", anchor=W)

tree.column('#0', stretch=NO, minwidth=0, width=0)#,bg="#CD69C9")
tree.column('#1', stretch=NO, minwidth=0, width=0)

tree.column('#2', stretch=NO, minwidth=0, width=80) tree.column('#3', stretch=NO,
minwidth=0, width=120) tree.column('#4', stretch=NO, minwidth=0, width=90)
tree.column('#5', stretch=NO, minwidth=0, width=80) tree.column('#6', stretch=NO,
minwidth=0, width=120) tree.column('#7', stretch=NO, minwidth=0, width=120)
tree.pack()

tree.bind('<Double-Button-1>', OnSelected)

35

CHAPTER 8
SYSTEM TESTING
8.1. SOFTWARE TESTING
System testing is a comprehensive testing process that evaluates the complete
and integrated software system to verify that it meets specified requirements. It
involves testing the software's functionality, reliability, and performance as a whole,

rather than individual components, to ensure overall system quality and effectiveness

It is indeed typically accomplished by software testing engineers. Its
performance occurs in a context comparable to the one used in production, permitting

the developers and other relevant parties to analyze user responses.

There are four levels of software testing: unit testing, integration testing,
system testing and acceptance testing, all are used for the testing purpose. Unit
Testing used to test a single software; Integration Testing used to test a group of units
of software, System Testing used to test a whole system and Acceptance Testing used
to test the acceptability of business requirements. Here we are discussing system

testing which is the third level of testing levels.

The below flowchart shows where the System testing happens in the software
development life - cycle.
® White box testing
® Black box testing

System testing falls under Black box testing as it includes testing of the
external working of the software. Testing follows user's perspective to identify minor
defects.

System Testing includes the following steps.

Verification of input functions of the application to test whether it is

producing the expected output or not.

36

® Testing of integrated software by including external peripherals to check the
interaction of various components with each other.
o Testing of the whole system for End to End testing.

® Behaviour testing of the application via a user's experience

SYSTEM TESTING IMPORTANT

» oSystem Testing gives hundred percent assurance of system performance as it
covers end to end function of the system.

» olt includes testing of System software architecture and business requirements.

» olt helps in mitigating live issues and bugs even after production.

» oSystem testing uses both existing system and a new system to feed same data in
both and then compare the differences in functionalities of added and existing
functions so, the user can understand benefits of new added functions of the

system.

37

CHAPTER 9
SCREENSHOTS

LOGIN:

? To Do List Appoinment = X

To Do List Appoinment

+ ADD NEW |

Name Purpose Gender Date Address Contact

ADD APPOINTMENT:

To Do List Appoinment
f Admission Enquiry Management System = —
ToDo Lis |

Purpose Gender Date Address Contact
Name

Purpose

Gender & Male ¢ Female

Date
Address

Contact

38

USER REGISTER:

rf Admission Enquiry Management System - X

To Do List Appoinment

To Do List
. Purpose Gender Date Address Contact

Name sineka
Purpose meeting
Gender ¢ Male # Female
Date 21/09/2024
Address thanjavur
Contact 987654321(

Save

LISTING PAGE:

To Do List Appoinment — x

To Do List Appoinment

|

MName Purpose Gender Date Address Contact

yuvasri Hospital Female 23/09/2024 Thanjavur 9865432710
Sineka meeting Female 21/09/2024 Thanjavur 9876543210
soundharya party Female 22/09/2024 chennai 9765432180

39

DELETE:

To Do List Appoinment

Purpose Contact

Female 21/09/2024 thanjavur 9876543210

40

CHAPTER 10
CONCLUSION

In conclusion, the to-do list appointment management system
project in Python provides a valuable tool for organizing tasks and
appointments efficiently. Throughout the development process, key
components such as task creation, deletion, and updating, appointment
scheduling, and user interface design were addressed. By implementing
this project, users can effectively manage their daily schedules and increase
productivity. Further enhancements could include adding reminder
functionalities, integration with calendar applications, and improving the
user interface for a more intuitive experience. Overall, this project serves
as a practical application of Python programming concepts for task and

appointment management.

Before delving into the conclusion of the appointment management
system, it's crucial to acknowledge the growing significance of efficient
appointment scheduling in today's fast-paced world. With the rise of
digitalization and the increasing reliance on technology for everyday tasks,
traditional methods of appointment booking are becoming outdated and
inefficient. Clients expect convenience and flexibility when scheduling
appointments, while businesses require streamlined systems to manage
their calendars effectively. In this context, the development and
implementation of a comprehensive appointment management system have

become imperative for organizations across various industries.

41

CHAPTER 11
FUTURE ENHANCEMENT

Advanced Analytics and Reporting:

Integrate advanced analytics to provide users with detailed insights into their
productivity trends, task completion rates, and time management patterns.

Generate customized reports that help users understand their performance and identify
areas for improvement.

Voice Commands Integration:

Implement voice command functionality to enable hands-free task and appointment
management.

Allow users to create, edit, and manage tasks and appointments using voice
commands, enhancing convenience and accessibility.

Al-Based Recommendations:

Use machine learning algorithms to provide intelligent recommendations for task
prioritization and scheduling.
Analyze user behavior and preferences to suggest optimal times for appointments and
highlight high-priority tasks.

Collaboration Features:

Introduce collaboration features that allow multiple users to work together on tasks
and share appointments.

Enable features such as task delegation, shared calendars, and group notifications,
making it suitable for team projects and family schedules.

Offline Functionality:

Enable offline access to the application, allowing users to manage their tasks and

appointments without an internet connection.

42

Implement data synchronization that updates the system once the internet connection
is restored, ensuring data consistency and availability.

Third-Party Integrations:

Expand integrations with other productivity tools and platforms, such as Slack,
Microsoft Teams, Google Calendar, and Trello.

Facilitate seamless workflow management by allowing users to import/export tasks
and appointments between different systems.

Enhanced Security Features:

Implement additional security measures, such as two-factor authentication (2FA) and
biometric authentication, to enhance data protection.

Regularly update security protocols to protect user data from emerging threats and
vulnerabilities.

Customizable Dashboards:

Allow users to customize their dashboards and views according to their preferences.
Provide options for different themes, layouts, and widgets, enabling a more
personalized and user-friendly experience.

Gamification;

Introduce gamification elements to make task management more engaging and
motivating.

Implement features such as achievement badges, progress bars, and leaderboards to
encourage users to complete their tasks and reach their goals.

Multi-Language Support:

Add support for multiple languages to cater to a diverse user base globally.

Ensure that the application is accessible to non-English speaking users by providing
localized content and user interfaces.

Smart Notifications and Reminders:

Enhance the notification system to provide smart reminders based on user preferences

and behavior.

43

Implement features such as snooze options, recurring reminders, and priority-based
alerts to ensure users never miss important tasks or appointments.

Integration with Wearable Devices:

Integrate the application with wearable devices such as smartwatches and fitness
trackers.

Allow users to receive notifications, view tasks, and manage appointments directly
from their wearable devices, increasing accessibility and convenience.

Enhanced User Interface and Experience:

Continuously improve the user interface to make it more intuitive and user-friendly.
Gather user feedback and conduct usability testing to identify and implement
necessary design improvements.

By incorporating these future enhancements, the To-Do List and Appointment
Management System can provide a more comprehensive, engaging, and efficient

solution for users looking to manage their tasks and appointments effectively.

44

REFERENCES

. Z. Zheng, S. Xie, H. Dai, X. Chen and H. Wang, "An Overview of Block
chain Technology: Architecture Consensus and Future Trends", 2017 IEEE
International Congress on Big Data (BigData Congress), pp. 557-564, 2017.

. Dylan Yaga, Peter Mell, Nik Roby and Karen Scarfone, "Block chain
Technology Overview", 2019 National Institute of Standards and Technology
Cryptography and Security.

. A Alammary, S Alhazmi, M Almasri and S. Gillani, "Block chain-Based
Applications in Education: A Systematic Review", Applied Sciences, vol. 9,
no. 12, pp- 2400, 2019, [online] Available:
https://doi.org/10.3390/app9122400.

Q. Zheng, Y. Li, P. Chen and X. Dong, "An Innovative IPFS-Based Storage
Model for Blockchain", 2018 IEEE/WIC/ACM International Conference on
Web Intelligence (WI), pp. 704-708, 2018.

. M. Turkanovi¢, M. Holbl, K. Kosi¢, M. Hericko and A. Kamisali¢, "EduCTX:

A Blockchain-Based Higher Education Credit Platform", IEEE Access, vol. 6,
pp. 5112-5127, 2018

. H. Li and D. Han, "EduRSS: A Block chain-Based Educational Records

Secure Storage and Sharing Scheme", IEEE Access, vol. 7, pp. 179273-
179289, 2019.

. Emanuel Estrela Bessa and Joberto Martins, "A Block chain-based

Educational Record Repository”, 2019 CoRR abs 1904.00315.

. A. Alkouz, A. Hai Yasien, A. Alarabeyyat, K. Samara and M. Al-Saleh,
"EPPR: Using Block chain For Sharing Educational Records" in 2019 Sixth
HCT Information Technology Trends (ITT), Ras Al Khaimah, United Arab
Emirates, pp. 234-239, 2019.

. T. Kanan, A. T. Obaidat and M. Al-Lahham, "Smart Cert Block Chain

Imperative for Educational Certificates", 2019 IEEE Jordan International Joint
Conference on Electrical Engineering and Information Technology (JEEIT),

pp. 629-633, 2019.

45

https://doi.org/10.3390/app9122400

10. Yaoqing Liu, Guchuan Sun and Stephanie. Schuckers, "Enabling Secure and
Privacy-Preserving Identity Management via Smart Contract", pp. 1-8, 2019.

12.1. Book References

Book Reference:

» PYTHON: The complete reference - Martin c.Brown
» Teach Yourself SQL-SERVER - Shaum series
» SQL server7: The Complete Reference - Gayle Coffeman

12.2. Website Reference:

> https://docs.python.org/3.9/
> https://docs.python.org/3/library/tkinter.html

> https://www.sqlite.org/docs.html

46

https://docs.python.org/3.9/
https://docs.python.org/3/library/tkinter.html
https://www.sqlite.org/docs.html
http://www.sqlite.org/docs.html

	Data Flow Diagram
	Book Reference:
	12.2. Website

